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پيشگفتار
يمهندسبهمربوطهايپديدهمطالعهدانشبهمربوطدرساينمباحث•

.استهاآنبنديفرمولبرايرياضيابزاركارگيريبهوشيمي
يمهندسدرمسائلفرمولبنديوسازيمدلهايروشابتدايي،فصلدر•

مدلنايازحاصلمعادلاتحلسراغبهبعدهايفصلدروشدهبيانشيمي
.رفتخواهيمسازي

شدهتوزيعو)Lumped(يكپارچهبنديفرمولروشدوبا•
)Distributed(شدخواهيمآشنا.

دديعوتحليليرويكرددوباراآمدهدستبهديفرانسيلمعادلاتحل•
.دشونميمعرفيمعادلاتحلهايروشبهترينودادهقراربررسيمورد
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فهرست مطالب
مسائلسازيمدلوبنديفرمول:اولفصل•
ديفرانسيلمعادلاتتحليليحلهايروش:دومفصل•
متعامدتوابعبرمروريو)ليوويل-اشتورم(S-Lمسئله:سومفصل•
يرهامتغتفكيكروشبهايپارهديفرانسيلمعادلاتحل:چهارمفصل•
ترمميانآزمون•
جبريروشبهعدديمعادلاتحلبرمروري:پنجمفصل•
عدديانتگرالومشتق:ششمفصل•
طشراياوليه،شرايط(عدديروشبهمعموليمعادلاتحل:هفتمفصل•

)مرزي
محدودتفاضلروشبهعدديروشبهمعادلاتحل:هشتمفصل•
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منابع
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Lumped formulation
Distributed formulation

Lumped & distributed formulation

يكديگر،برهاآنمتقابلاثروسيستميكمتغيرهايتاثيرمطالعهجهتمتداولهايروشازيكي▪
.باشدمي)Mathematical Modeling(رياضيسازيمدلازاستفاده

رهايمتغيوپارامترهاتاثيرنحوهوميزانكهاستهاييمدليامدليافتنرياضيمدلازمنظور▪
.دهدنشانسيستمرفتاربررويرامختلف

و)حركتاندازهوانرژيجرم،(بقاءقانونمانندعموميقوانينبرخيازرياضي،سازيمدلدر▪
.شودمياستفاده)...ونيوتنويسكوزيتهقانونفوريه،قانونفيك،قانونمانند(خاصقوانينبرخي

غلظتگراديانبهجرمانتقالشاروابستگي:فيكقانون▪

دماگراديانبههدايتيحرارتانتقالشاروابستگي:فوريهقانون▪

نيوتنسرمايشقانون▪

سرعتگراديانبهتنشوابستگي:نيوتنويسكوزيتهقانون▪
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𝑞 = −𝑘
𝑑𝑇
𝑑𝑥

𝑞 = ℎ 𝑇 − 𝑇ஶ

𝐽 = −𝐷
𝑑𝐶
𝑑𝑥

𝜏 = −𝜇
𝑑𝑢
𝑑𝑦



:ازعبارتندمدلسازيبرايلازممراحل▪
كنترلحجمكردنمشخص-١
مدلسازيكليقانونانتخاب-٢
مدلسازيدراستفادهموردفرضياتتعيين-٣
موجودمتغيرهايبراساسسيستمبرحاكمموازنهتعيين-٤
عملياتيمتغيربهكليمتغيرهايتبديلبرايخاصقوانينازاستفاده-٥
اوليهومرزيشرايطتعيين-٦
بنديفرمولانواع▪

Lumpedيايكپارچهبنديفرمول-١

Distributedياشدهتوزيعبنديفرمول-٢

Integralبنديفرمول-٣

.باشدمي)Bio(بايوتعددبنديفرمولنوعتعيينبرايكميمعيارناپايا،حالتدر×
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فتگتوانمياستگرفتهقرارسياليكمجاورتدركهداغفلزيتيغهيكبرايمثالبراي▪

▪Lشودميتعيينمقابلروشبهكهاستجسممشخصهطول:
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L
L

T

T0

L
T∞

Conductive resistance of solid

Convective resistance between fluid and solid
=Bio

=
ൗ𝐿

𝑘ௌ

ൗ1
ℎ௙

=
ℎ௙. 𝐿

𝑘ௌ

𝐼𝑓 𝐵𝑖𝑜 < 0.1 ⇒ 𝐿𝑢𝑚𝑝𝑒𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝐼𝑓 𝐵𝑖𝑜 > 1 ⇒ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

L = ௏
஺=

جسم حجم
حرارت معرضانتقال در سطح



بهحرارتي،k=W/m.oC٢٠٠هدايتيحرارتانتقالضريبوcm١٠قطربهفلزيگلولهيكدر▪

oC٢٠دمايباسياليمعرضدرراگلولهاين.شودميتوليدهمگنصورتبهkW/m3١ميزان

سازيمدلروشچهكنيدتعيين.دهيمميقرارh=W/m2.oC١٥جابجاييحرارتانتقالوضريب

.استمناسبسيستماينبراي
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قرار∞CAغلظتبامحيطيكمجاورتدركهCA0غلظتباAمادهازاشباعمتخلخلتيغهيكبراي▪

گفتتوانمياستگرفته
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L
L

T

T0

L
T∞

𝐼𝑓 𝐵𝑖𝑜௠ < 0.1 ⇒ 𝐿𝑢𝑚𝑝𝑒𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝐼𝑓 𝐵𝑖𝑜௠ > 1 ⇒ 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

CA0

CA∞

internal diffusion resistance

external convection resistancemBio =

=
ൗ𝐿

𝐷஺

ൗ1
𝑘஼

=
𝑘஼
𝐷஺

𝐿



∞TدمايبامحيطيدروشدهخارجكورهازT0ابتداييدمايباR0شعاعبه متقارنايكره▪
)T0>T∞(آوريددستبهراكرهايندردماتوزيعمعادله.شودميسرد.
:حل▪
كنترلحجمانتخاب:اولمرحله-١
حرارتيموازنه:كليقانونتعيين-٢
:فرضيات-٣

hfازتربزرگخيليوثابت)ks(حرارتيهدايتضريبكوچك،كره)الف

نتيجه؟؟؟
.هستندثابتهمكرهدانسيتهوحجم
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ρ, V, cp T∞

T0

موازنهنوشتن-٤

خاصقوانينازاستفاده-٥
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𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

( )  3 24 ( )
4 ( )

3 o p o

dT t
R C R h T t T

dt
   

 − = − 
 

⇒
𝑑
𝑑𝑡 𝑚𝑐௣𝑇 = −ℎ𝐴 T 𝑡 − 𝑇ஶ



اوليهومرزيشرايطتعيين-٦
.آوريددستبهرازمانبهنسبتدماتغييراتمعادلهديفرانسيل،معادلهاينحلبا:تمرين

:باشدنداشتهصدقkبودنبزرگوكرهبودنكوچكفرضاگر)ب
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   )(
dt
dT

          
3 =+= TtT
h

CR po 


0)0( TtT ==

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

= 𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

r

∆r

qr:سيستميهوروديحرارتيشار

qr+∆r:سيستمازخروجيحرارتيشار

نتيجهدر

برطرفينتقسيمبا
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r

∆r

2 2

2 2

4 ( , ) 4 ( , )

4 4

p p

r r r

r r C T r t t r r C T r t

r q t r q t

   

  +

 +  − 

=  − 

𝑉 =
4
3 𝜋𝑟ଷ

0r       0t      4 2 →→ trr



:داريممشتقتعريفازاستفادهبا

نوشتتوانميفوريهقانونكارگيريبهبا

داريمنتيجهدر

)α(حرارتينفوذضريبتعريفازاستفادهبا

نتيجهدر
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( )rp qr
rrt

trT
C 2

2

1),(



−=

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r
T

kqr 

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2
2

( , ) ( , )
p

T r t k T r t
C r

t r r r
    =     




=
pC

k

شرطدوواوليهشرطيكبهنيازمعادلهاين
.داردrبعُددرمرزي

:اوليهشرط

:مرزيشرايط
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𝐴معادلهباگرماگيرواكنشيكCSTRراكتوريكدر ⇄
௞మ

௞భ
𝐵 + 𝐶استانجامحالدر.

.آوريددستبهراراكتوراينتوصيفبرايديفرانسيلمعادلات
:حل
Fi:حجم/زمان(وروديحجميدبي(

CAi:جزءموليغلظتA)مول/حجم(
Ti:خوراكاوليهدماي
)دليلبا(سازيمدلروشوسيستمانتخاب-١
موليموازنه-٢
تغييرهممايعارتفاع.استثابتcpودانسيته-٣

.)ثابتحجميدبي(كندنمي
.كنندميتبعيتآرنيوستئوريازسرعتثوابت
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ρ, V

Q(t)

Fi
CAi
Ti
Cpi
ρi

F
CA
T
Cp
ρ

:Aجزءبرايموليموازنهنوشتن-٤

نوشتههمCوBجزءبرايموليموازنهبايدنتيجهدر.باشدمينيزCوBجزءغلظتاطلاعاتبهنياز
:شود
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𝐴 ⇄
௞మ

௞భ
𝐵 + 𝐶

𝑑 𝑉. 𝐶஺
𝑑𝑡 = 𝐹. 𝐶஺௜ − 𝐹. 𝐶஺ − 𝑘ଵ𝐶஺ − 𝑘ଶ𝐶஻𝐶஼ 𝑉

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜n of A = 𝑖𝑛𝑝𝑢𝑡 of A − 𝑜𝑢𝑡𝑝𝑢𝑡 of A
+𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴

𝑑 𝑉. 𝐶஻
𝑑𝑡 = 0 − 𝐹. 𝐶஻ + 𝑘ଵ𝐶஺ − 𝑘ଶ𝐶஻𝐶஼ 𝑉



:باشدميانرژيموازنهنوشتننتيجهدرودماييهايدادهداشتنبهنيازk2وk1تعيينبراي

:ازعبارتستحاصلمدلنهايتدر
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𝑑 𝜌𝑉𝑐௣𝑇
𝑑𝑡 = 𝜌௜𝐹௜𝑐௣௜𝑇௜ − 𝜌𝐹 ௣𝑇 + 𝑄௧ − 𝛥𝐻௥ 𝑘ଵ𝐶஺ − 𝑘ଶ𝐶஻𝐶஼ 𝑉

𝑑𝑇
𝑑𝑡 =

𝐹
𝑉 𝑇௜ − 𝑇 +

𝑄௧
𝜌𝑉𝑐௣

−
𝛥𝐻௥
𝜌𝑐௣

𝑘ଵ𝐶஺ − 𝑘ଶ𝐶஻𝐶஼

𝑑𝐶஺
𝑑𝑡 =

𝐹
𝑉 𝐶஺௜ − 𝐶஺ − 𝑘ଵ𝐶஺ + 𝑘ଶ𝐶஻𝐶஼

𝑑𝐶஻
𝑑𝑡 = −

𝐹
𝑉 𝐶஻ + 𝑘ଵ𝐶஺ − 𝑘ଶ𝐶஻𝐶஼

:ازعبارتندكهاستنيازاوليهشرط٤معادلات،اينبراي-٦
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𝑑𝑇
𝑑𝑡 =

𝐹
𝑉 𝑇௜ − 𝑇 +

𝑄௧
𝜌𝑉𝑐௣

−
𝛥𝐻௥
𝜌𝑐௣

𝑘ଵ𝐶஺ − 𝑘ଶ𝐶஻𝐶஼

𝑑𝐶஺
𝑑𝑡 =

𝐹
𝑉 𝐶஺௜ − 𝐶஺ − 𝑘ଵ𝐶஺ + 𝑘ଶ𝐶஻𝐶஼

𝑑𝐶஻
𝑑𝑡 = −

𝐹
𝑉 𝐶஻ + 𝑘ଵ𝐶஺ − 𝑘ଶ𝐶஻𝐶஼



لولهديواره.استشدهدادهپوششكاتاليزورباLطولوR0شعاعبهاياستوانهراكتوريكديواره

ازثابتدمايهمينباVثابتسرعتباوCiمتوسطوروديغلظتباAگازوبودهTwثابتدمايدر

𝐴معادلهبااولدرجهغيربرگشتيواكنشيككاتاليستسطحرويAگاز.كندميعبورلوله → 𝐵

راكتوردرغلظتپاياي توزيعبتوانآنكمكبهكهآوريددستبهديفرانسيليمعادله.دهدميانجام

.آورددستبهرا

:حل

:سيالتودهسرعتباوروديگازجريان

:zجهتدرنفوذاثردروروديگازجريان

:rجهتدرنفوذاثردروروديگازجريان
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2 Vr rC 

2
C

D r r
z

 
− 



2
C

D r z
r

 
− 



∆z

∆r

:داريمAمادهبرايجرميموازنهنوشتنبا

,𝛥𝑟و2πr∆r∆zبرعبارتتقسيمبا 𝛥𝑧 → :نوشتتوانمي0
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2 2 2 2

2 2 0

z z z z
r

z z
r r

C C
Vr rC r r D D r z Vr rC

z r

C C
r r D D r z

z r

   

 

+

+
+

 
 −  −  − 

 

 
+  +  =

 

2

2

1      = +       

C C C
V D r D

z r r r z

2 2

2 2

( , ) 1 ( , ) ( , ) ( , )    
 = + +     

C r z C r z C r z C r z
V D

z r r r z



مرزي؟؟؟؟شرطواوليهشرط:سوال

.داردrجهتدرمرزيشرطدووzجهتدرمرزيشرطدوبهنياززيرمعادله
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2 2

2 2

( , ) ( , ) 1 ( , ) ( , )    
= + +     

C r z C r z C r z C r z
V D

z r r r z

-Lumpedمدلازكهاينفرضبا.استحركتحالدرديوارهبررويسيالازفيلمي▪
distributedآوريددستبهراپاياحالتدرسرعتتوزيعكنيم،استفاده.

:حل▪
كنترلحجمانتخاب:اولمرحله-١
ممنتمموازنه:دوممرحله-٢

24

x

y

δ

ω

L



فرضيات-٣
xجهتدريافتهتوسعهجريان-

)ثابتدانسيته(ناپذيرتراكمسيال-
ثابتسيالويسكوزيته-
نيوتنيسيال-

xجهتدرنيروموازنه:موازنهنوشتن-٤
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⇒ 𝜏௬௫|௬ା௱௬ − 𝜏௬௫|௬ 𝐿. 𝜔 + 𝑚
௢

𝑢|௫ୀ଴ − 𝑚
௢

𝑢|௫ୀ௅ + 𝑝|௫ୀ଴ − 𝑝|௫ୀ௅ 𝛥𝑦. 𝜔
+ 𝜌𝑔sin 𝛽. 𝛥𝑦. 𝐿. 𝜔 = 0

⇒ 𝜏௬௫|௬ା௱ − 𝜏௬௫|௬ 𝐿. 𝜔 + 𝜌𝑢௫. 𝑢|௫ୀ଴ − 𝜌𝑢௫. 𝑢|௫ୀ௅ 𝛥𝑦. 𝜔
+ 𝑝|௫ୀ଴ − 𝑝|௫ୀ௅ 𝛥𝑦. 𝜔 + 𝜌𝑔sin 𝛽. 𝛥𝑦. 𝐿. 𝜔 = 0

موازنهنوشتن-٤

𝛥𝑦و𝛥𝑦.𝐿.𝜔برتقسيمعبارتكل → 0

خاصقوانينازاستفاده-٥
)نيوتنيسيال(ويسكوزيتهقانون

اوليه؟؟؟ومرزيشرايط-٦

)دقيقه٥(نهايي؟؟؟پاسخ*
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𝜏௬௫|௬ା௱ − 𝜏௬௫|௬
𝛥𝑦 + 𝜌𝑔sin 𝛽 = 0

𝜏 = 𝜇
𝑑𝑢
𝑑𝑦

⇒
𝑑

𝑑𝑦 𝜇
𝑑𝑢௫
𝑑𝑦 + 𝜌𝑔sin 𝛽 = 0 ⇒ 𝜇

𝑑ଶ𝑢௫
𝑑𝑦ଶ + 𝜌𝑔sin 𝛽 = 0



2𝐴واكنش،bubble columnراكتوريكدر▪ ௚ + 𝐶 ௟ → 𝐷 ௟خواهيممي.شودميانجام
.آوريمدستبهرافرآينداينبرحاكممدل

:حل
كنترلحجمانتخاب-١

موليموازنه-٢
L:مايعموليفلاكس
S:راكتورمقطعسطح
c:مايعموليدانسيته
x:جزءموليكسرDمايعفازدر

27

z

استفادهموردفرضيات-٣
.كنيمميصرفنظرCوDتبخيرميزاناز-
.استثابتراكتورطولدردماواكنش،انجاموجودبا-
.شودمياستفادهplugفرضازمقطعسطحدر-
.استسريعواكنش-
.استثابتراكتورطولدرجرمانتقالفلاكسنتيجهدراست،رقيقAمادهازگاز-
.استثابت)c(مايعموليدانسيته-

Dجزءموليموازنهنوشتن-٤

a:ويژهسطح)௦௨௥௙௔௖௘ ௢௙ ௕௨௕௕௟௘௦
௏௢௟௨௠௘(

28

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝜕𝑛஽
𝜕𝑡 = 𝐿. 𝑥|௭ା௱௭ − 𝐿. 𝑥|௭ 𝑆 + 𝑁஽. 𝑎. 𝑆. 𝛥𝑧



Dجزءموليموازنهنوشتن-٤

𝛥𝑧و𝑆.𝛥𝑧برعبارتكلتقسيمبا → 0

خاصقوانينازاستفاده-٥

اوليهومرزيشرط-٦

29

𝜕
𝜕𝑡 𝑆. 𝛥𝑧. 𝑐. 𝑥 = 𝐿. 𝑥|௭ା௱௭ − 𝐿. 𝑥|௭ 𝑆 +

𝑁஺
2 . 𝑎. 𝑆. 𝛥𝑧

𝑐
𝜕𝑥
𝜕𝑡 = 𝐿

𝑥|௭ା௱௭ − 𝑥|௭
𝛥𝑧 +

𝑁஺
2 . 𝑎 ⇒ 𝑐

𝜕𝑥
𝜕𝑡 = 𝐿

𝜕𝑥
𝜕𝑧 +

𝑁஺
2 . 𝑎

yAs

yAb

𝑁஺ = 𝐹 . ln
1 − 𝑦஺௦
1 − 𝑦஺௕

اسكالرميدانگراديان▪

𝐴برداريميدانديورژانس▪ = 𝐴௫𝑖 + 𝐴௬𝑗 + 𝐴௞𝑘شودميتعريفزيرشكلبه:

𝐴برداريميدانكرل▪ = 𝐴௫𝑖 + 𝐴௬𝑗 + 𝐴௞𝑘شودميتعريفزيرشكلبه:
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grad i j k
x y z

  
 =  = + +

  

z

A

y

A

x

A
AdivA zyx




+



+




== .

zyx AAA

zyx

kji

ACurlA

        

         

               










==



شودميحاصلزيركليمعادلهمسائل،اينبرايديفرانسيلفرمولاسيوناز▪

)١(

.باشدميحجمواحدازايبهشدهتوليدحرارت’’’uكه
فوريهقانونازاستفادهبا▪

)٢(

داريمنهايتدر▪

)٣(

.باشدميلاپلاسيناپراتورهمان𝛻2كه▪

kبودنثابتصورتدر▪

)٤(
31

uq
Dt
DT

C =+ .

Tkq −=

( ) uTk
Dt
DT

C += . 2.
DT

C k T k T u
Dt

  =   +  +

(3) 20.0
DT

k C k T u
Dt

  = ⎯⎯→ =  +
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)٥(CuT
Dt

DT  /2 +=

C

k


 =

) ٦(در مختصات كارتزين   
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tDt
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zyx 

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در مختصات استوانه اي

zz
x

y
yxrry

rx

=

=+==

=

1-22 tan            sin

cos





2در مختصات استوانه اي

2

2

2
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2
2 11

zrr
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
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

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

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
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2 11
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در مختصات كروي







cos

tan    tan       sinsin

sincos

22
1-1-222
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y
zyxrry
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+
==++==

=

)١١(

2در مختصات كروي
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2
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sin

sin
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Cu
z

T

y
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z

T
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T
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T
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T
zyx  /

2
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




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+

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=

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+

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+

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+

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):٥(كامل معادله بسط با 

)١٣(

معادله (خواهد بود ) ثابت و سرعت صفر و بدون توليد حرارتk(براي جامدات ) ٥(معادله 
):نفوذ

T
t

T 2=

 

:خواهد بود) پاياو دانسيته ثابت، جريان آرام و در حالت k(براي سيالات غيرقابل تراكم ) ٥(معادله 

TTV 2. = 

:جامدات با توليد حرارت خواهد بودبراي پايا در حالت ) ٥(معادله 

0.02 =+ k
uT

:)معادله لاپلاسين(و در جامدات با شرايط فوق بدون توليد حرارت خواهد شد 

0.02 = T
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:معادله پيوستگي كلي به صورت زير بيان مي شود

( )
t

u



−=
.

( ) ( ) ( )
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u zyx
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 

zyx uuu .مولفه هاي بردار سرعت هستند,,

): در حالت پايدار ) 0.0.        0.0 ==



u
t



=      .0.0or      0.0:جريان تراكم ناپذير



+
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
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==
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صورت زير براي سيستم هاي انتقال جرم به همراه واكنش شيميايي معادله انتقال به
:مي باشد

RC
Dt

DC
+= 2D

D :    ضريب نفوذR :سرعت واكنش

=R=0.0 اگر      D 2C
Dt

DC

:براي سيستم ساكن معادله فوق خواهد شد

Cمعادله نفوذ يا قانون دوم نفوذ فيك
t

C 2D=



رام خواهيم براي سيستم بدون واكنش شيميايي در حالت پايدار براي جريان آ
:داشت

CCV 2D. =

:و براي نفوذ در جامدات در حالت پايدار بدون واكنش شيميايي داريم

0.02 = C

.معادلات فوق براي سيستمهاي با دانسيته ثابت نوشته شده اند
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:معادله حركت در حالت كلي به شكل زير بيان مي شود
gP

Dt

VD  +−−= .



:معادله حركت براي سيال نيوتني با خواص ثابت خواهد بود

2     
DV

V P F Navier Stockes
Dt

  =  − + − )١(

 :ويسكوزيتهF


فشار: Body force Pنيروهاي ثقلي يا : 

معادله اولر يا معادله ممنتوم) ٢(


 P
F

Dt

DV
PF

Dt

DV 
−=−=         

:معادله فوق در مختصات كارتزين در سه جهت خواهد بود
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Ordinary Differential Equation (ODE)معادلات ديفرانسيل معمولي 

.معادله اي است كه شامل مشتق يا مشتقات يك تابع باشد: معادله ديفرانسيل

.معادله ديفرانسيلي كه تنها شامل يك متغير مستقل مي باشد: معادله ديفرانسيل معمولي

:Partial Differential Equation (PDE)معادله ديفرانسيل پاره اي 

.معادله ديفرانسيلي كه داراي بيش از يك متغير مستقل باشد
.نامندميديفرانسيلمعادلهآنمرتبهراديفرانسيلمعادلهدرموجودمشتقمرتبهبالاترين:ديفرانسيلمعادله)Order(مرتبه

 .نامندميديفرانسيلمعادلهآندرجهراديفرانسيلمعادلهدرموجودمشتقمرتبهبالاترينتوان:ديفرانسيلمعادلهدرجه

)٣، درجه ٢مرتبه  ) ( ) 253 5 xyyy =++

١xyyy، درجه ٢مرتبه  tan2 =−+

مثلا . ثابت خواهد بودnشامل nجواب عمومي يك معادله ديفرانسيل مرتبه : General Solutionحل عمومي 

:خواهد بودديفرانسيلجواب عمومي معادله  4=y

BAxxy ++= 22
.دو ثابت هستندBو Aكه 
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معادلهعموميحلازكهاستجوابيديفرانسيل،معادلهيكخاصجوابيا:Particular Solutionخاصحل
مثالخاصجوابB=5وA=3دادنقراربامثالعنوانبه.شودميحاصلثوابتمعلوموخاصمقاديرازايبه

:استزيرصورتبهفوق

532 2 ++= xxy

.داردوجودمرزيشرطnبهنيازكندارضاراnدرجهديفرانسيلمعادلهكهخاصبجواكردنپيدابراي

كردنمشخصتوسط(معادلهعموميحلازكهاستجوابيمنفرد،جوابيا:Singular Solutionمنفردحل
:مثالبراي.شودحاصلنتواند)ثوابت

( )2yyxy −=

2AAxy: جواب عمومي −=

4: جواب منفرد
2xy =

42

:ODEدسته بندي 

.روشهاي حل عمومي دارند): Linear Equation(خطي معادلات •
.به جز موارد خاص روشهاي حل عمومي ندارند): Nonlinear Equation(غير خطي معادلات •

:ام خطي در حالت كلي به صورت زير استnمعادله ديفرانسيل مرتبه 

( ) ( ) )()(...)()( 0
1

1 xgyxayxayxa n
n

n
n =++ −

−

)(0.0: معادله همگن =xg

)(0.0: معادله غيرهمگن xg

:تشكيل معادله ديفرانسيل از يك رابطه اوليه
معادلهاههرگ.كنيمميحذفرامنحنيدستهمعادلهدرموجودثابتهايديفرانسيل،معادلهآوردندستبهبراي
هاثابتيمنحندستهمعادلهومشتقاتاينازاستفادهباوبگيريممشتقبارnبايدباشدثابتnدارايمنحنيدسته

.كنيمحذفرا
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2معادله ديفرانسيل دسته منحني به معادلات ) مثال
1 c
x

c
y .را بيابيد=+

) حل
yx

x

c
yc

x

c
y −=−=+= 2

12
1

2
1 c            

0.02      2      2      
2 23

1
3

3
1 =+−=== yyxyxyxcyx

x

c
y

)()(...هرگاه بخواهيم از معادله دسته جواب  2211 ++= xfCxfCyبه معادله ديفرانسيل مربوطه

: دست يابيم از بسط دترمينان زير استفاده مي كنيم

0.0

)(     ...    )(     )(     

.           ...              .                 .              .

.            ...             .                 .              .

  .            ...              .                 .              .

)(        ...        )(        )(        

)(        ...        )(        )(         
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)(

21

21
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

xfxfxfy

xfxfxfy

xfxfxfy

n
n

nnn
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n

Separation of(متغيرهاجداسازيروش-١  Variables(
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0.0)()()()( 2211 =+ dyygxfdxygxf )١(

)()(0.0بر تقسيم كل عبارت  12 ygxf

)٢(0.0
)(

)(

)(

)(

1

2

2

1 =+ dy
yg

yg
dx

xf

xf

 =+ cdy
yg

yg
dx

xf

xf

)(

)(

)(

)(

1

2

2

1

مطلوبست حل معادله ديفرانسيل زير) مثال

( ) ( ) 0.02222 =−++ dyyxydxxyx
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( ) ( ) 0.011 22 =−++ dyxydxyx

( )( )11 −+ xy تقسيم بر 

0.0
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dx
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
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زيرديفرانسيلمعادلهحلمطلوبست:مثال▪
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( )24xy
dx
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)١(( ) dxxydy 24−=

)٢(dvdxdyvxy +==− 4          4
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:استزيرشكلبهقبلمثالديفرانسيلمعادلهكليپاسخكنيداثبات:تمرين▪

.آوريددستبهرازيرديفرانسيلمعادلهپاسخ:تمرين▪
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𝑦 = 𝑐ଵ𝑥 + 𝑐ଶ𝑥ଶ + 𝑐ଷ𝑥ିଵ +
1

15 𝑥ସ

𝑦ᇳ − 𝑦ᇱ + 𝑦 = 0

ياديفرانسيلمعادلهخاصجوابكنيمميفرضروشايندر▪
جوابعبارتكهجاآناز.باشدصورتبهypهمان

بهν2(x)وν1(x)توابعشدنجايگزينوc2وc1پارامترهايتغييرباوبودهديفرانسيلمعادلههمگن

.اندناميدهپارامترتغييرروشراروشاينايم،رسيدهخصوصيجواب
خواهيم.كنيمتعيينراν2(x)وν1(x)توابعاستكافيتنهاروش،اينبهخاصجوابتعيينبراي▪

:داشت

كنيمميفرض▪

نتيجهدر▪
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:داشتخواهيمپسكند،صدقديفرانسيلمعادلهدربايدهمخصوصيجوابكهجاآناز▪

:نوشتتوانميفاكتورگيريبا▪

:داشتخواهيمنتيجهدر▪

.داردν’2وν’1مجهولدومعادلات،دستگاهاين▪

.كرداستفادهكرامرروشازتوانميν’2وν’1تعيينبراي▪
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:گفتتوانميزيردستگاهحلبراينتيجهدر▪

داشتخواهيمنتيجهدر▪

معادلهخصوصيجوابوآمدهدستبهν2(x)وν1(x)توابعگيري،انتگرالازپسنهايت،در▪

.آيدميدستبهصورتبهديفرانسيل
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.كنيدحلراديفرانسيلمعادله:مثال▪

:باشدميزيرصورتبهشدهدادهديفرانسيلمعادلههمگنجواب:حل

وداشتخواهيمنتيجهدر

:شودنوشتهبايدزيرمعادلاتدستگاهنتيجهدر

داشتخواهيمكرامرروشازاستفادهبا
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:داريمآمدهدستبهتوابعازگيريانتگرالبا:حلادامه

:بودخواهدزيرصورتبهخصوصيجوابو

:داريمنهايتدرنهيهمبراصلازاستفادهبا
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.كنيدحلراديفرانسيلمعادله:مثال▪

:باشدميزيرصورتبهشدهدادهديفرانسيلمعادلههمگنجواب:حل

وداشتخواهيمنتيجهدر

:شودنوشتهبايدزيرمعادلاتدستگاهنتيجهدر

داشتخواهيمكرامرروشازاستفادهبا
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:داريمآمدهدستبهتوابعازگيريانتگرالبا:حلادامه

:بودخواهدزيرصورتبهخصوصيجوابو

:داريمنهايتدرنهيهمبراصلازاستفادهبا
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نيزخطيnمرتبهديفرانسيلمعادلاتخصوصيجوابتعيينبرايتوانميراپارامترتغييرروش➢

صورتبهمعادلهعموميجوابكهصورتيدريعني.دادتعميم
...،ν1،ν2توابعتوانميزيردستگاهحلوفرضباباشد،

...،νnآورددستبهراخصوصيجوابوتعيينرا.
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گاماتابع1.

بهاگامتابعكليتعريف.گرفتقراراستفادهمورد١٨١٤سالدرلژاندرتوسطبارنخستينتابعاين▪

:استزيرشكل

:گفتتوانميباشد،x=1اگرتعريفطبق▪

:گفتتوانميهمچنين▪

كهصورتيدر▪
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نوشتتوانميxازصحيحمقاديربراي▪
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.شودميمرتبطگاماتابعبهخود،تعريفبهبناتابعاين:بتاتابع2.

:استزيرشكلبهنيزتابعاينتعريف▪

:باشدميزيرصورتبهگاماوبتاتابعرابطه▪

:گفتتوانميچنينهم▪

)تقارنخاصيت(

كنيداثبات:تمرين▪
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.رودميكاربهحرارتجرمنفوذواحتمالتئوريدرمعمولاًتابعاين:خطاتابع3.

:استزيرشكلبهتابعاينتعريف▪

:شودميتعريفزيرشكلبهنيزخطامكملتابعنامبهتابعيعلاوه،به▪
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زيرمعادلهدرتوابعمجموعهايناگر.بگيريدنظردر… ,n=1, 2, 3برايرامجموعه▪

.نامندمي)اورتوگونال(متعامدياهمبرعمودراتوابعاينكنند،صدق

.آيدميدستبهخطاوسعيطريقازتابعاينموارد،ازبسياريدر.شودميگفتهوزنتابعr(x)به▪

بالانتگرالامقداراگر.باشندمتعامدتوابعتاكندصدقمجموعهعضودوهربرايبايدانتگرالاين▪
.نامندمياورتونرمالراتوابعمجموعهاينباشد،١بابرابرm=nحالتبراي

:استمتعامدمجموعهيك[π,0]محدودهدر١وزنتابعبامجموعهمثال،عنوانبه▪
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:باشدميزيرشكلبهباشد،θهاآنبينزاويهكهBوAبرداردوداخليضربيادآوري،عنوانبه▪

.شدخواهدباشندعموديكديگربربرداردوكهصورتيدر▪
:شودميبردهكاربهزيرعبارت،[a,b]محدودهدرg(x)وf(x)تابعدوداخليضرببراي▪
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:گفتتوانميدرنتيجه.دارندتعامدخاصيت١وزنتابعباتوابعاين:cosوsinتوابعتعامد▪
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صورتبهرامذكورتابعتوانميآنگاه.باشدp=2Lتناوبدورهبامتناوبتابعيf(x)تابع:فرض
موسومf(x)تابعفوريهسريبهكهمختلفهايآرگومانباكسينوسيوسينوسيجملاتازمجموعي

:نوشتزيرصورتبهاست

:شوندميمحاسبهزيرروابطازوشودميناميدهفوريهسريضرائبa0وan،bnآن،دركه
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:استزيربصورتآنفوريهبسطباشد،فرد LوL–فاصلهدرf(x)تابعاگر
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:باشيمداشتهزيرشكلبههمگن٢مرتبهخطيمعادلهيكاگر▪

معادلهمرزيشرايطچنينهموبودهپيوستهbتاaمحدودهدرrوp،qتوبعمعادله،ايندركه▪
:)همگن(باشدزيرشكلبهفوق

بهنسبتمجموعهباشند،تاازايبهمعادلههايجوابتاچهچنانگاهآن▪
ديگرعبارتبه.دهدميتشكيلرامتعامدمجموعهيكbتاaمحدودهدرr(x)وزنتابع
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راباشندپيوستهقطعهقطعهصورتبهحداقلbتاaمحدودهدرمشتقاتشوخودكهf(x)تابعهر▪
:درنتيجه.دادربطهمگراصورتبه)S-Lمسئلههايجواب(ويژهتوابعبرحسبتوانمي

:كنيمضربS-Lانتگرالدررابالارابطهطرفينبايدcnمقاديرآوردندستبهبراي▪
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:هستندمثلثاتيتوابعهمهاآنجوابكهمثلثاتيمعادلات▪

:داريمS-Lمعادلهبامعادلهاينمقايسهبا▪

:داريممشخصهمعادلهازاستفادهبا▪

ميزيرمانندزياديشرايط.باشدهمگنبايدS-Lمسئلهدرمرزيشرايطكهشداشارهقبلبخشدر▪
:گرفتنظردرتوان

:اولحالت▪
ويژهمقادير
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.متعامدنديكديگر 95
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.متعامدنديكديگر

.كنيدبحثمقابلديفرانسيلمعادلهجوابخصوصدر:تمرين▪
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استزيرشكلبهمعادلهاينكليفرم▪

گفتتوانميS-Lمعادلهبامعادلهاينمقايسهبا▪

انجاموانيتهايسريكمكبه)متغيرضرايب(بسلمعادلهحلديديممهندسيرياضيدرسدرقبلاً▪
هنقطگفتتوانميفرمبهمعادلهتبديلبا.گيردمي

x0=0استبسلمعادلهبرايمنظممنفردنقطهيك.
:بودخواهدفروبينيوسروشبهمعادلهحلپس▪

:داريمكردنمرتبومعادلهدرمشتقاتشوy(x)مقاديردادنقراربا▪
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آندركه

هاجوابصورت،ايندر.شدخواهدباشد،صحيحعدديكνاگر▪
.نيستندقبولقابلونداشتهاستقلاليكديگربهنسبت

:شودميتعريفنيززيرشكلبهYν(x)صورتبهديگريجوابحالت،ايندر▪
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استزيرشكلبهمعادلهاينكليفرم▪

بسلمعادلهبامعادلهاينمقايسهبا

:نوشتزيرفرمبهرابسلشبهمعادلهتوانمي▪

:بودخواهندزيرفرمبهمعادلههايجوابپس▪

:شوندميتعريفزيرصورتبه)بسلشبهتوابع(KوIجديدهايسريكه▪
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:هستندزيرشكلبهشدهاصلاحبسلتوابع▪
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استزيرشكلبهبسلمعادلهعموميفرم▪

.آيدميدراويلر-كوشيمعادلهشكلبهامادارد،جوابمعادلهاينهمباز،r=0در
:آيدميدرزيرشكلبهمعادلهزير،متغيرهايتغييراعمالبا▪

نتيجهدر▪

ازعبارتستنهاييجوابو▪
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ديديمبسلمعادلهدرقبلاً▪

گفتتوانميS-Lمعادلهبامعادلهاينمقايسهبا▪

:استزيرشكلبهمعادلهاينجوابدانيممي▪

.نداردتعامدخاصيتIيافتهتغييربسلتابعوبودهتعامدخاصيتدارايJبسلتابع▪
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:)همگن(باشدزيرشكلبهفوق
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ديگرعبارتبه.دهدميتشكيلرامتعامدمجموعهيكbتاaمحدودهدرr(x)وزنتابع
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اولحالت▪

داشتخواهدجوابمقدارnازايبهمعادلهاين▪
.شودميگفتهويژهمقادير،)λn(مقاديراينبهكه
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.شود
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سومحالت▪

.شودميگفتهويژهمقادير،)λn(مقاديراينبهكهداشتخواهدجوابمقدارnازايبهمعادلهاين▪
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T∞داردقرار.

مدلسازيكمكبهبايدابتدا:حل
پرهبهمربوطديفرانسيلمعادله

.آيددستبه
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:Lumpedصورتبهyجهتدروشدهتوزيعمدلسازيxجهتدر

المانانتخاب-١

:كليقانونانتخاب-٢
حرارتيموازنه

:استفادهموردفرضيات-٣
پاياحالت

ثابت)k(هدايتيحرارتانتقالضريب

موازنهنوشتن-٤
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qcond(x+Δx)

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

0input output − = ( ) ( ). . 0cond c cond c conv sx x x
q A q A q dA

+
 − − =

نوشتتوانميهامثلثتشابهقضيهازاستفادهبا

داشتيمقبلاً▪

وقتيوبرعبارتكلتقسيمبا▪
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خاصقوانينازاستفادهباعملياتيمتغيربهكليمتغيرهايتبديل-٥

نتيجهدر

داشتخواهيممعادلهكردنمرتببا

اوليهومرزيشرايطتعيين-٦
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ناهمگنفرموانتميساده،متغيرتغييريكازاستفادهباوبودهناهمگنآمدهدستبهديفرانسيلمعادله
:كردتبديلهمگنفرمبهرا

گفتتوانميبسلمعادلهعموميفرمبامقايسهبا
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:آيدتدسبهدماييتوزيعوشدهحلمعادلهاينبايدحالديفرانسيل،معادلهآوردندستبهازپس

استزيرشكلبهعموميبسلمعادلهجواب:يادآوري

:كنيممياستفاهKوIتوابعازاند،آمدهدستبهموهوميفرمبهmبرحسبβمقاديركهجاآناز

اولمرزيشرطاعمالبا
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.باشدميمخروطيپرهدردماتوزيعنهاييمعادلهرابطه،اين
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دهندميرامتعامدمجموعهيكتشكيلمعادلهاينهايجواب

nباشدميصحيحعدديك

داريممعادلهتبديلبا

نيتواسريصورتبهرامعادلهجوابنتيجهدرواستمعادلهاينبرايعادينقطهيكx0=0نقطه

:داريممعادلهدردادنقراروگيريمشتقبا.گيريممينظردر

oهايجوابQnباشندميشدهتعريفبراي.

هاQnوهاPnمقاديرتواني،هايسريكمكبه
.آيندميدستبهمقابلشكلبه
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.بودخواهدجوابجزوهمQnباشيمداشتهناقص

داريمزيرهايمرزيشرطداشتنبا
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داريمعلاوهبه

داشتخواهيملژاندرمعادلهدرمتغيرتغييربا

بودخواهدزيرفرمبهنيزمعادلهاينبرايتعامدخاصيتو
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:آيندميدستبهزيرصورتبهلژاندرشبهمعادلههاي

:آيندميدستبهزيرشكلبهلژاندرشبهمعادلههايجوابلژاندر،معادلههايجواباز
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استزيرشكلبهتوابعتعامدخاصيتو

گفتتوانمي

زيرهايمرزيشرطداشتنبا

داريمو
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بهمعادلات(باشندرپذيتفكيكفرمبهابتدابايدشوندميحلمتغيرهاتفكيكروشبهكهمعادلاتي▪
.)باشندهمگنوخطيصورت

ازوبودههمگنبعديكدرمرزيشرايطحداقل)دوبعديمسئلهبراي(كهاستاينديگرشرط▪
ازوودهبهمگنبعددودربايدمرزيشرايطحداقلبعدي،سهمسئلهبراي.كندتبعيتS-Lمسئله
.كندتبعيتS-Lمسئله

پاياحالتدرمقابل،بعديدوديوارهبراي:مثال
بود؟خواهدصورتچهبهدماتغييرات

حرارتانتقالواستزيادعمقكنيمميفرض(
).گيردميصورتyوxابعاددر

معادلهسپسودادهانجامرامدلسازيبايدابتدا:حل
.كنيمحلراآمدهدستبهديفرانسيل

كنترلحجمانتخاب-١

حرارتيموازنه:كليقانونانتخاب-٢
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:گيردانجاممرزيشرايطتفكيكبايدحال

159

( )

( )2

cos
" ' 1 0

sin

" 2 ' 1 0

n n

r R rR n n R




 +  + +  = 
 + − + =

( )
2 " 2 ' " cos '

1
sin

r R rR
n n

R




 +  
= − + = +   

( ) ( ) ( )1 2cos cosn nc P c Q    = +

:rجهتدرمعادلهحلحال

:)نهيبرهماصل(بودخواهدزيرشكلبهكليجوابنتيجهدر

داريمناهمگنمرزيشرطاعمالبا

داريمPn(cos θ)تعامدخاصيتازاستفادهبا
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( )2 " 2 ' 1 0r R rR n n R+ − + = ( ) ( ). 2 2 1 1 0Euler Eq m m n n⎯⎯⎯⎯→ + − − + =

( ) 1
3 4

n nR r c r c r − − = +1 2; 1m n m n = = − −

( ) ( )
1

, cosn
n n

n

T r a r P 


=

=

( ) ( )0 0. .2 : ; ,BC r r T r f = = ( ) ( ) ( )0 0
1

, cosn
n n

n

T r f a r P  


=

 = =

( ) ( )

( )
0

2
0

0

cos sin

cos sin

n

n
n

n

f P d

a

r P d





   

  
 =




( ) ( )

0 0

2 1
cos sin

2 nn

n
f P d

r



   +
= 



لاپلاسمعادلهبرايگرفتنتيجهتوانميكليطوربهبخش،ايندرشدهحلهايمثالبهتوجهبا
𝛁𝟐𝑻(دوبعدي = :باشدداشتهرازيرهايحالتتوانميديفرانسيلمعادلهجواب،)𝟎
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𝜵𝟐𝑻 = 𝟎 
(2D)

كارتزين
جواب مثلثاتي: بعد همگن

جواب هذلولوي: بعد ناهمگن

استوانه اي

θ وr
θبعد همگن جواب مثلثاتي

rبعد ناهمگن معادله اويلر

r وz
zبعد همگن جواب مثلثاتي

rبعد ناهمگن جواب شبه بسل

z  وr
rبعد همگن جواب بسل

z نبعد ناهمگ جواب هذلولوي

كروي

θبعد همگن جواب تابع لژاندر

rبعد ناهمگن جواب اويلر

𝛁𝟐𝑻(لاپلاسمعادلهاگر = :شوداضافهآنبهناهمگنيترميكفقطوگرفتهنظردررا)𝟎

مسئلهيك(امجزمسئلهدوبهرامسئلهمعادله،اينحلبراي.نامندميپواسونمعادلهراديفرانسيلمعادلهاين
𝛁𝟐𝑻همگنلاپلاسبعديدو = .)استحلقابلبراحتيكهناهمگنبعدييكمسئلهيكو𝟎
.كنيمميجمعيكديگرباراهاجوابانتها،دروكردهحلجداگانهرامسئلهدوازكدامهر

𝑿كنيمفرض.نيستپذيرامكانهميشهكاراينالبته = 𝒙,𝒚بودخواهدممكنحالتسه.باشد:
.)g(X)=cte(باشدثابتناهمگني:اولحالت-١

ياxتابع)ناهمگني(ديگرقسمتوyوxتابعقسمتيكوگرفتهنظردردوقسمتيرامسئلهحالتايندر
yشودميگرفتهنظردر:

.g=g(x)مثالبراي.باشدمسئلهمستقلمتغيرهايازيكيتابعناهمگني:دومحالت-٢
:گيريممينظردرزيرصورتبهراجوابحالت،ايندر
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( )2T g X =

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, , , ,T x y T x y T x or T x y T x y T y= + = +

( ) ( ) ( )1 2, ,T x y T x y T x= +



.)g=g(x,y)(باشدمسئلهمستقلمتغيردوهرتابعناهمگنيكهاستاينسومحالت-٣
مانندهاتبديلكمكبهتوانميونبودهحلقابلمتغيرهاجداسازيكمكبهمسئلهاينكلي،حالتدر

.كردحلرامسئلهفوريهتبديل

رعتستوزيع.داردجريانآبآن،درواستزيادخيليكانالطول.بگيريدنظردررامقابلكانال:مثال
.آوريددستبهراكانالداخلدرسيال

.شودانجاممدلسازيبايدابتدا:حل
پاياحالت-١:فرضيات

نيوتنيسيال-٢
جريانكهاستكافيقدريبهكانالطول-٣

:پس.شوديافتهتوسعه

.استآرامجريان-٤

:داشتخواهيممدلسازيازپس
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x

y

z

2L

2h ( ),u u y z=

2 2

2 2

1u u P

y z x
  

+ =
  

فشارپروفيلحالت،ايندركهدانيمميسيالاتمكانيكاز
:پس.بودخواهدثابت

ديگرعبارتبهيا

.)پواسونمعادلهاولحالت(استثابتآنناهمگنيكهداريمناهمگنلاپلاسمعادلهيكنتيجهدر
:ازعبارتندمرزيشرايط

:ازعبارتستجوابو
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x

y

z

2L

2h

2 2

2 2

u u
b cte

y z

 
+ = =

 

1 P
cte b

x


= =


( )
( )

( )
( )

. .1: ; ,

0,
. .2 : 0 ;

. .3 : ; ,

,0
. .4 : 0 ;

B C y h u h z

u z
B C y

y

B C z L u y L

u y
B C z

z

= =


 = = 


= =
  = =
 



:داريمديفرانسيلمعادلهدرشدهگرفتهنظردرجواباعمالبا

حالتترينراحتجواب،آمدندستبهبراي
:گيريممينظردررا

.كنيمميتفكيكهاآنبرايرامرزيشرايطوكردهمشخصجداگانهرامسئلهدو
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( ) ( ) ( )

2 2

2 2

1 2, ,

u u
b

y z

u y z u y z u y

 
+ = 

 = +

2 2 2
1 1 2

2 2 2

u u u
b

y z y

  
 + + =

  

2 2 2
1 1 2

2 2 2

u u u
b

y z y

  
 + = − +

  

2 2
1 1

2 22 2 2
1 1 2

2 2 2 2
2

2

0

0

u u

y zu u u
b

y z y u
b

y

 
+ =     + = − +  

   − + = 

:مرزيشرايطتفكيك

:كنيمميتفكيكزيرشكلبهرامرزيشرايطومسئلهدونتيجه،در
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( )
( )

( )
( )

. .1: , 0

0,
. .2 : 0

. .3 : , 0

,0
. .4 : 0

BC u h z

u z
BC

y

BC u y L

u y
BC

z

=


 = 


=
  =
 

( ) ( )
( ) ( )

( ) ( )
( )

1 2

1 2

1 2

1

, 0

0, 0
0

, 0

,0
0

u h z u h

u z u

y y

u y L u y

u y

z

+ =

  + =   

+ =
 =
 



.است)بعديكدرحداقل(همگنمرزيشرايطبالاپلاسديفرانسيلمعادلهيكاولمسئله
:بودخواهدزيرصورتبهu1جوابكنيداثباتتمرينعنوانبه

:استحلقابلسادگيبهكهباشدميمستقلمتغيريكبا٢مرتبهديفرانسيلمعادلهيكدوممعادله

:بودخواهدزيرصورتبهجوابنتيجهدر
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2
2

2

u
b

y


=



( )1
1

, cos coshn n n
n

u y z a y z 


=

= ( )2 1

2n

n

h




+
=

2
1

u
by c

y


 = +


( ) 2

2 22

b
u y y c = +

( )2. .1: 0BC u h =

( ) ( ) ( )1 2, ,u y z u y z u y= +
22

1

1 cos cosh
2 n n n

n

bh y
a y z

h
 



=

  = − +  
   



:كنيماعمالكليجواببررويرا)ناپذيرتفكيك(ناهمگنمرزيشرطبايدحال

دررابالامعادلهطرفيناگر.شوداستفادهcosتابعتعامدخاصيتازبايدanضريبتعيينبراي

:داريمكنيمضرب

نتيجهدرو
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22

1

1 cos cosh
2 n n n

n

bh y
a y L

h
 



=

   − =  
   

( ) ( )1 2. .3 : ,BC u y L u y= −

0

cos
h

m y dy

2
2

10 0 0

cos cos cosh cos cos
2 2

h h h

m m n n m n
n

bh b
y dy y y dy a L y ydy    



=

− =  

2
2

0 0

cos cos
2 2

cosh
2

h h

n n

n

n

bh b
y dy y y dy

a
h

L

 



−
=

  ( )
3

2 1

cosh

n

n n

b

h L 
−

=



:شودميگفتهنفوذمعادلهمقابلشكلبامعادلاتيبه

وبودههمگنمسئلهمرزيشرايطتماميكهاستاينمتغيرهاجداسازيروشبهنفوذمعادلهحلشرط
.باشد)اوليهشرط(زمانبُعددرتنهاناهمگني

رامقابلشرايطبااستوانهدرناپايادمايتوزيع:مثال
بسيارآنطولوبودهمتقارناستوانه.آوريددستبه

.باشدميزياد

:رسيممينفوذمعادلهبهمدلسازيازپس
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( ),T T r t=

1 1T T
r

r r r t
    =    

2

2

1

1

T
T

t
C

C D t


 = 

  =
 

r0

h, T∞

ازعبارتنداوليهومرزيشرايط

:كنيمميرفعرا∞Tناهمگني،∞θ=T-Tمتغييرتغييربا
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( )
( )

( ) ( )( )

0

0 0 0

. .: 0 ; ,0

. .1: 0 ; 0,

. .2 : ; , ,

I C t T r T

BC r T t finite

BC r r k T r t h T r t T
r 


 = =


= =
  = − = −



r0

h, T∞

( ) ( ), ,r t T r t T = −
1 1r
r r r t

 


    =    

( )
( )

( ) ( )( )0 0 0

. . : 0 ; , 0

. .1: 0 ; 0,

. .2 : ; , ,

I C t T r T

B C r T t T

B C r r k T r t h T r t T
r








 = − =


= − =
  = − = −  

2

2

1 1
r r r t

  


  
 + =

  



داريممتغيرهاتفكيكروشازاستفادهبا

:داريمشدهگرفتهنظردرجواببرعبارتكلتقسيمبا

:rجهتدرمعادلهحلابتدا

:گيردانجاممرزيواوليهشرايطتفكيكبايدحال
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( ) ( ) ( ), .T r t R r t=  ( ) ( ) ( ) ( ) ( ) ( )1 1. " . ' . . 't R r t R r R r t
r   +  = 

( ) ( ) ( )
( )

( )
( )

( )
( )

. " ' '1 1 .
'

R r t R r R r t

R r r R r t


  
⎯⎯⎯⎯→ + = =


2= −

2 2 2

2

" ' 0

'

r R rR r R

 

 + + = 
 = − 

2 2 2" ' 0r R rR r R+ + = ( ) ( ) ( )1 0 2 0R r c J r c Y r  = +

( )
( )

( ) ( )

0

0 0

. .1: ,0

. .1: 0,

. .2 : , ,

I C r

B C t finite

B C k r t h r t
r


 =


=
  − =  

 



 

( )
( )

( ) ( )

0

0 0

. .1: ,0

. .1: 0

. .2 :

I C r

BC R finite

BC k R r h R r
r

 

 =


 =
  − =  

:داريمدوممرزيشرطاعمالباو

:داريمهمtبُعددرمعادلهحلبا

:)نهيبرهماصل(بودخواهدزيرشكلبهكليجوابنتيجهدر

)اوليهشرط(ناهمگنشرطاعمالحال
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( ) ( )1 0R r c J r=

( ) ( )0 1 0 1 0. .2 : ;BC r r c k R r c h R r
r


= − =  

( ) ( )0 0 0 0 0n n

h
J r J r

k
  + =

2'   = − 
( )
( )

2' t

t
 


 = −


( )
( )

2' t
dt dt

t
 


 = −

  ( ) 2ln t t c   = − +

( ) 2ln t t ce e   − + = ( ) 2

.c tt e e  −  =
2

3.
tc e  −=

( ) ( ) 2

0
1

, t
n n

n

r t a J r e  


−

=

 =

( ) ( )0 0
1

,0 n n
n

r a J r  


=

 = =( ) 0. .1: ,0I C r =



.كنيممياستفادهبسلتابعتعامدخاصيتازanضريبتعيينبراي
كنيم،ضربدرراقبلمعادلهطرفيناگربسل،تابعتعامدخاصيتازاستفادهبا

:آيدميدستبهزيرشكلبهanضريب

:داريمتابعاينتعامدخاصيتسومحالتوبسلتابعانتگرالروابطازاستفادهبا

:نهايتدرو
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( )
0

0

0

r

mJ r rdr

( ) ( ) ( )
0 0

0 0 0 0
10 0

r r

m n n m
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J r r dr a J r J r rdr   
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=
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( )1 0

02
2 2

0 0 02

2 n n
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n n

J r
a T T

h
r J r
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 

 
 = −

 
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 

( ) ( )

( )
( ) 21 0

02
1 2 20 0

0 02

, 2 n n t
n

n
n n

T r t T J r
J r e

T T r h
J r

k

 


 


 −

=

−
=

−  
+ 

 



استفادهباسپس.)لقبمثالمانند(كنيمميهمگنتابعتغييربارامعادلهبتوانيماگرابتداكلي،حالتدر
.كردحلرامعادلهتوانميمتغيرهاجداسازيروشاز
.كنيممياستفادهزيرروشازكنيمهمگنراتابعنتوانيمكهصورتيدر

:شودايجاداستممكنحالتدوناهمگنمسألهيكبراي
مينظردرزيرشكلبهراجوابصورت،ايندركهباشدداشته)steady state(پاياجوابمسئله-١

:گيريم

:بودخواهدزيرشكلبهجوابفرضحالت،ايندركهباشدنداشتهپاياجوابمسئله-٢
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( ) ( ) ( )1 2, ,T x t T x t T x= +

جواب گذرا جواب پايا

معادله نفوذ همگن معادله ناهمگن

( ) ( ) ( ) ( )1 2 3, ,T x t T x t T x T t= + +



.گيردارقربررسيموردمسئلهفيزيكبايدخير،ياداردپاياجوابمسئلهكهاينتشخيصبراي
:گيردميقرارT2وT1ثابتدمايتحتطرفينازT0اوليهدمايباتيغهيك:مثال

)T1, T2>T0(

بهدماتوزيع).ts.s(خاصيزمانمدتگذشتازپس

.رسدميخطيحالت

:داريممسئلهدرپاياحالتپس

175

x

:گيردميقرارqwگرماييفلاكستحتطرفدوازT0اوليهدمايباتيغهيك:مثال

مصرفياخروجبرايمحليكهجاآناز

گرفتنتيجهتوانمينداريم،وروديگرماي

:نداريممسئلهدرپاياحالت

176

qwثابتفلاكسqwثابتفلاكس

( ) ( ) ( ) ( )1 2 3, ,T x t T x t T x T t= + +

x



اينطرفدواز.باشدميCA0بابرابرآندرAمادهغلظتاوليه،لحظهدركهداريمجامديجسم:مثال
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طرفدواز.باشدميC0بابرابرصفحهكلدرAمادهغلظتابتدادر،2Lضخامتبهايصفحهدر▪

*CبابرابرصفحهطرفدورويAمادهغلظت.نمايدمينفوذصفحهداخلبهAمادهصفحه،اين

ثابترافيزيكيخواص(.tوxحسببرصفحهدرAمادهغلظتتوزيعتعيينمطلوبست.باشدمي

.)بگيريدنظردر

دانيممي:حل

نويسيمميزيرمعادلهازصفحهبرايرابعدييكنفوذمعادله

اوليهومرزيشرايط
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.كنيممياستفادهمتغيرتغييرازاوليه،شرطناهمگنيرفعبراي

:آيندميدرزيرفرمبهاوليهومرزيشرايطومعادلاتنتيجهدر
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:گيريمميلاپلاسمرزيشرايطوديفرانسيلمعادلهطرفيناز

نوشتتوانمينتيجهدر

.استخطيوهمگندوم،مرتبهمعموليديفرانسيلمعادلهيكفوقمعادله
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:معادلهجواب
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داريمنتيجهدر

نوشتتوانمينهاييجوابتعيينبراي

دانيممي

نتيجهدر
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Combination of  Variables or Similarity

يكدارايسيستمكهرودميكاربهايپارهديفرانسيلمعادلاتازدستهآنحلبرايروشاين▪

نشدهتعريفمشخصيطولسيستمدرعبارتيبهيا)نهايتبينيمهجسم(باشدنهايتبيمرزيشرط

.باشد

معادلهاست،ستمسيمستقلمتغيرهاياز)تابعي(تركيبيكهجديدمتغيريكتعريفباحالت،ايندر▪

اوليهوزيمرشرايطاعمالباسپسوشدهتبديلمعموليديفرانسيلمعادلهبهايپارهديفرانسيل

.شودميحاصلجوابوشدهحلمعادلهجديدمتغيربرحسب

.شدخواهددادهشرحزيرمثالدرروشايناصول▪
تغييرTsبهنآسطحدمايناگهانوبودهصفربابرابرابتداييدماينهايت،بينيمهجسميكدر:مثال

.آوريددستبهراجسمايندردماتوزيع.كندمي

:حل
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برايصرفاًكاراينالبته.كنيمميتعريفرابعُدبيدمايمسئله،حلسادگيجهتابتدا

:داريمنتيجهدر.شودميحلراحتيبهمسئلههمتعريفاينبدونوشدهانجامحلسادگي

:كنندميتغييرزيرشكلبهمرزيشرايط
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توانيصورتبهtوxبرحسبجديديمتغيرآمده،دستبهمعادلهحلبرايمتغيرهاتركيبروشدر

:كنيمميتعريف

aوmوnاستزيركلشبهثوابتاينتعيينروش.شوندمشخصبايدكههستنداختياريهايثابت:

:شوندبيانηبرحسبمشتقاتبايدمعادلهدرابتدا
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:دهيمميقرارراعبارتجايبهآمدهدستبهمعادلهدر

:داريمقبلمعادلهدردادنقراربا

:نتيجهدر.دهيمميقراراصليمعادلهدررامشتقمعادلمقادير
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كنيمخابانتايگونهبهبايدرامقاديراين.هستندانتخابيثوابتيnوa،mمقاديركهشداشارهقبلاً

:آيددرايسادهشكلبهآمدهدستبهمعموليديفرانسيلمعادلهكه

:شودايجادηتاكنيمميضربatnدرراكسرمخرجوصورتبالا،معادلهدرxحذفبراي

:كنيمحذفراtبايدحال

رايب.گرفتنظردرآنبرايتوانميغيرصفرمقدارهرونداردمسئلهحلدرنقشيaمقدارانتخاب

.گيريممينظردر٠/٥بابرابررافوقكسرمخرجسادگي
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نتيجهدر

گفتتوانميپس

:آيدميدرزيرفرمبهمعموليديفرانسيلمعادلهانتخاببا
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:داشتخواهيمديفرانسيلمعادلهازگيريانتگرالباردوبا

:ايمديدهخطاتابعتعريفدرقبلاً

:كنيممياستفادهمرزيشرايطازثوابتتعيينبراي

نتيجهدر
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يمنهايتبيجسمايندردماتوزيعبهشدهفرضمقاديرباηوθمتغيرهايجايگذاريبانهايتدرو

:رسيم
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.دكراستفادهمعموليبهايپارهديفرانسيلمعادلهتبديلوηانتخابدرتوانميزيرجدولاز▪

كارهبقبلمثالدركهروشيكمكبهاستنشدهاشارهجدولدركهديگريمعادلهنوعهربراي▪
.آورددستبهراηمقدارتوانميشدگرفته
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دمايباجامديكسطحرويازT0وروديدمايباسياليشكل،مطابق

دماتوزيعپايا،حالتدر.استجاريپايينبهريزانصورتبهTsثابت

.آوريددستبهراسيالدر

:داريمحرارتانتقالكليمعادلهازاستفادهبا:حل

:آيدميدرزيرشكلبهمعادلهپايا،حالتدر

:داريمكنيمصرفنظرzجهتدرهدايتيحرارتانتقالازكهصورتيدر
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خطيصورتبهسرعتتوزيعريزان،مايعفيلمدردانيممي

:باشدميزيرشكلبهآنمعادلهو

:آمدخواهددرزيرشكلبهديفرانسيلمعادلهنتيجهدر

نتيجهدر
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شرايطوديفرانسيلمعادلهوكردهتعريفزيرشكلبهراθبعُدبيمتغيرمسئله،حلسادگيبراي

:نويسيمميمتغيراينبرحسبرامرزي

:جلسههمين١٢اسلايددرشدهاشارهجدولازاستفادهبا

:داريمآمدهدستبهمعموليديفرانسيلمعادلهازگيريانتگرالباردوبا
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:كنيممياستفادهمرزيهايشرطازثوابتتعيينبراي

:داريمگيريمشتركمخرجبا
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